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A b &  Using Baker-Campbell-Hausdorff formulae for the exponentials of the 
generators of the SU, and SU(1,l) goups, we calculate the matrix elements of spherical 
and hyperbolic rotations in the angular momentum basis. 

The irreducible representations of the rotation group O3 have been constructed by 
several authors and expressions for the matrix elements of the rotation operator have 
beencalculated (Wigner 1959, Moses 1966, Carmeli 1968, Schwinger 1952, Arecchi et 
a/ 1972). The standard technique uses the homomorphism of O3 with the unitary 
unimodular group SU2 such that to every rotation R € 0 3  there corresponds two 
matrices *U E SU2 and to every U E SU2 there corresponds a rotation R E  03. Thus 
“ i o n  of irreducible representations of SU, yields single or double valued 
irreducible representations of Os. 

Using this technique, b e l i  (1968) has shown how matrix elements of D(R) can 
be calculated either in the Euler angle parametrization or in the parametrization using 
theangle of rotation 1,9 and a unit vector n along the axis of rotation. It was pointed out 
by hecchi et al (1972) that these matrix elements can be calculated simply using a 
Baker-Campbell-Hausdorff (BCH) formula for the exponentids of the generators J of 
the rotation group and recursion relations among the eigenvectors 1 jm) of J’ and 53. 

Schwinger (1952) has developed angular momentum theory in the framework of 
@eation and annihilation operators of the two dimensional isotropic oscillator. In 
addition to the conventional angular momentum operators affecting the quantum 
nuber m he introduced ‘hyperbolic’ angular momentum operators which change j .  In 
a recent paper Witschel (1 974) has calculated the matrix elements of hyperbolic 
rotations defined in terms of these hyperbolic angular momentum operators. 

In this paper we apply the technique of BCH formulae for spherical and hyperbolic 
rotations to derive the results of Carmeli and Witschel in an extremely simple manner. 

In the following section we derive the required BCH formulae. 
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2. Baker-Campbell-Hadodl formulae for SU2 and SU(1,l) 

It has been pointed out by Giimore (1974) that BCH formulae giving exp X e q  y in 
the form exp Z(X, Y) can be obtained simply by matrix multiplication whenever x, y 
a e  operators in a finite dimensional Lie algebra. 

AS specific examples consider the Lie algebras of the SU2 and SU(1,i) goups 
spanned by the operators J*, J3 and K,, K3 obeying the commutation relatiom 

[K+, K-] = -.2K3. (2.4) 

In what follows it will be convenient to obtain the disentanglement theorems of the 
following type: 

exp( W+J+ + W-J- + W3J3) = exp(X+J+) exp[(ln X3)J3] exp XJ- 

exp( V+K+ + V-K- + V3K3) = exp( Y+K+) exp[(ln Y3)K3] exp( Y-K-). 

(2.5) 

(2.6) 

Consistent with Gilmore's observation, we note that J*, J3, K,, K3 have the faithful 
matrix representations 

0 0  J-=L 0) 

1 0  
J3=i(o -1) 

K+=(: i) 
0 0  

IC3=;(' 0 -1 "). 
Thus the form of equations (2.5) and (i.6) in this representation 

cosh f + ( W3/2fl sinh f (WJ2fl sinh f 
cosh f-( W3/2f) sinh f 

(2.7) 

(2.9) 

(2.10) 

(2.1 1) 

(2.12) 

(2.13) 
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and 
ash F+ (V3/2F) sinh F 
( (V+/2F)sinhF 

- ( V-/2F) sinh F 
cosh F- ( V3/2F) sinh F 

Yy2 - Y+ Y- Y y Z  

where 
f2=$w;+ w+w- 
F2=‘ 4v3- 2 v+v-. 

solving the matrix equations we get 

X3 = [cosh f- ( W3/2fl sinh fl-’ 
W, sinh f X ,  = 

2f Cosh f -  Wi Sinh f 

Y3 = [cosh F- ( V3/2F) sinh F]-2 

V, sinh F Y*= - 
2F cosh F -  V3 sinh F‘ 
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(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

We note that even though formulae (2.5) and (2.6) have been verified here in the 
2 X 2 matrix representati0n;they will be valid in any other faitkhl representation of J,, 
J3; K*, K3 with X3, X,, Y3, Y, given by equations (2.17)-(2.20). 

3. Matrix elements of spherical rotations 

It is known that the rotations R E O3 may be parametrized in two ways: in terms of the 
Euler angles a, p, y or in terms of the angle of rotadon IJ about an axis n where 

n = (sin 8 COS 4, sin 8 sin 4, cos 8).  (3.1) 
The rotation operators in..the two parametrizations can be written in the forms 

(3.2) 

(3.3) 

- i d 3  e-ij3J2 -iyJ3 Wff, 0, Y) = e  e 

D(+, n) = e-iJnr . J .  

We wish to calculate the matrix elements 

(imlDljm’> =D’,,, 
where 

J21jm> = j ( j  + 1)ljm) 

..h/jm>= mljm). 

(3.4) 

(3.5) 

(3.6) 

The usual technique utilizes the homomorphism between O3 and SU2 so that to each 
3 matrix R E O3 there correspond 2 x 2 matrices * U E SU2 such that 

Rij = 1 Tr giuqju+ (3.7) 
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and 
1 +z, Rijuflj 
2(1 +Tr 

U = *  (3.8) 

Next we note that the irreducible representations of the group SU2 a n  cOn- 
smcted in terms of the functions p(z )  where U + D;) and 

(3.9) 

where j is a positive half integer and uij are the matrix eIements of U E SU,. 
The monomials 

fm(z) = Z'+"[(j + m)!( j  - m)!]-1/2 (3.10) 
with 

m = - j ,  - j +  1, . . . , j  

form a canonical basis for the representation of dimension 2j+ 1. 
writing 

(3.11) 

x( U l  l)ji-"-"( U22)j-m-a ( U2J"( U22)m-n+" (3.12) 

The parameters ujj are determined from equations (3.8) whose explicit form for the 
two parametrizations is given by 

- e-Kp-~ ) /2  sin $p) 
,Xa+v)/Z cos $p (3.13) 

in terms of Euler angles and 

(3.14) 
-in- sin p,b 1 

cos it++ +in3 sin $11, 
cos $q - in3 sin $$ 

-in+ sin ~ t + +  1 

in terms of (& e,+) with 

n, = n, *inz. (3.15) 

In the Euler angle parametrization equation (3.12) gives the usual formula for the 
matrix elements DT",(a, p, y )  and in the case of (+, n) parametrization we get 

x (cos $+ + i sin ++ cos e)-(m+n)sCj, m, n; x) 
where 

0'- n)!G + a)! ( x  + l)j+n-a ( x  - 1)" 
SO', m, n; x) = 2 n + j  ? a !G+ n - a)!G - m - a)!(a + m - n)! 

(3.16) 

(3.17) 
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ad 
x = 1 - 2 sin2 sin2@. (3.18) 

This is the result of Carmeli (1968) in our notation. 
We now consider the calculation of DL($,b:,+) using the disentanglement 

(3.19) 
technique. Returning to equation (2.5) and putting 

W, = -i$ sin e e*'+ 
W3=-i#cos9 

we get 

and 
f = f i$/2 

x3 = (cos -&+in3 sin f$)-' (3.22) 

- inr sin ;+ 
cos ;# +in3 sin X* = 

Taking the matrix elements of equation (2.5), we get 

(3.23) 

where 

z = - sin2@ sin2&. (3.25) 

Equation (3.24) appears to be different from equation (3.17). However notingthat 

we can start with equation (3.24), and expanding (x + l)'+"-' and using the identity 

x - l = + 2 2  x + 1 = 2(1+2) (3.26) 

(3.27) 

we can show that the two results are the same. 

4. Matrix elements of hyperbolic rotations 

Schwinger (1952) has given the theory of angular momentum using the creation and 
annihilation operators of the two dimensional isotropic oscillator. We note certain 
fomulae which will be used in what follows. 

bnsider the operators a,, a: which satisfy the commutation relations 

[ae af] = 0 (4.1) 

[a:, a:,] = o (4.2) 

rae a:,] = (4.3) 
where 5,r' take values f . 
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The eigenvectors of the operator 
t t 

(4.4) N=a+a++a-a- 

are 

where 

a& 0) = 0 (4k) 
and n l ,  nz are non-negative integers. We define the operators 

t 

t 
J+ = a+a- 

J- = a-a+ 

J~ = $(a+a+- a-a-) 

K, = a+a- 

t ? 

t t  

(4.7) 

(4.8) 

(4.9) 
(4.10) 

K- = a+a- (4.11) 

K - -1 2(a+a++a-a-+ 7 t 1) (4.12) 

M+ =$aiaf; (4.13) 

M- =&+a+ (4.14) 

M = ’  3 4(a+a++a+a+) t t (4.15) 

N - L t  + - 2a-a- t (4.16) 

N- = ?a-a- 1 (4.17) 
N~ = t(a-a- t + a-a-). t (4.18) 

It is easy to see that J,, J3 form the algebra of SU2 while the sets (i) K,, K3 @> M*, 
M3 (%) N,, N3 form the algebra of SU(f, 1) under commutation. 

The eigenstates of J2, J3 can be easily written down; they are 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 
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(4.28) 

(4.29) 

(4.30) 
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N+Jj, m) =$Q +2  - m)Q+ 1 -m)I”21j+ 1, m - 1) 

jv-1~ m) =&j- m ) ~ -  m- ~)]”~lj- 1, m - 1) 

N~J~,  m) = $20’ - m) + UIj, m> 

the following we consider the calculation of the matrix elements of 

9 , e-i~.K e-i*.M 

in the Jj, m) basis. Special cases of these matrix elements have been considered by 
Witschel(1974). 

Using equation (2.6) with Y3, Y, given by equations (2.19-2.20) and the recursion 
relation equations (4.22-4.30), we can easily deduce the following results: 

(j, ml e-i’,Klj’, m’) 

(4.31) 

1 [ ( j -m)!]’ /2  
= c [o’- m-2p)G- m -2p - l)]l/2--- 

P 2”- p !G’ + p - j ) ! &  - - 2p) !]1’* 

Witschel(1974) has calculated the special cases 

@ = (io, 0, O), (0, id, 0) 

of equation (4.31) and 

$=2ie(l, 0,O) = 2e(o,i, 0) 

of equations (4.32) and (4.33). His results are extremely complicated while ours are 
quite simple. 

5. Conclusion 

BCH formulae for the exponentials of the generators of the SU2 and SU(1,l) 
goups we have found the matrix elements of the spherical and hyperbolic rotations. 
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